
Memory-efficient Random Forests in FPGA SmartNICs
Andrea Monterubbiano∗

monterubbiano@di.uniroma1.it
Sapienza University

Rome, Italy

Raphael Azorin∗
raphael.azorin@huawei.com
Huawei Technologies Co. Ltd

Paris, France

Gabriele Castellano
gabriele.castellano@huawei.com
Huawei Technologies Co. Ltd

Paris, France

Massimo Gallo
massimo.gallo@huawei.com
Huawei Technologies Co. Ltd

Paris, France

Salvatore Pontarelli
pontarelli@di.uniroma1.it

Sapienza University
Rome, Italy

Dario Rossi
dario.rossi@huawei.com

Huawei Technologies Co. Ltd
Paris, France

ACM Reference Format:
Andrea Monterubbiano, Raphael Azorin, Gabriele Castellano, Massimo
Gallo, Salvatore Pontarelli, and Dario Rossi. 2023. Memory-efficient Ran-
dom Forests in FPGA SmartNICs. In Companion of the 19th International
Conference on emerging Networking EXperiments and Technologies (CoNEXT
Companion ’23), December 5–8, 2023, Paris, France. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3624354.3630089

1 INTRODUCTION
Random Forests (RF) have been a popular Machine Learning (ML)
algorithm for more than two decades. This success can be attributed
to its simplicity, effectiveness and explainability. However, imple-
menting them in a high-speed programmable data plane is not
trivial. To make predictions, i.e., inference, RFs must traverse each
tree from the root to the leaf by comparing the features vector at
each split node. This process is particularly challenging in network
devices where memory is limited, and packet processing cannot
be delayed, i.e., predictions occur at line rate. Nevertheless, this
implementation is crucial for incorporating recent ML advances in
the network, which could benefit use cases such as scheduling, mea-
surements, and routing [1]. Prior studies such as Planter [4] have
examined the implementation of RF in network switches, mapping
trees to Match-Action Tables (MAT). Another line of work focused
on RF implementations optimized for FPGA, mapping tree layers
to pipeline stages as done in [2]. Such approaches use different tree
representations that naturally come with their strengths and weak-
nesses depending on the trees’ sparsity, depth, and input features.
In this work we (1) propose a novel representation for FPGA-based
Random Forests, (2) compare it against state-of-the-art implemen-
tations in terms of memory and computation requirements, and
(3) evaluate our design on a flow classification task using CAIDA
traffic traces.

2 APPROACHES
In this work, we focus on Random Forest models trained for binary
classification tasks with binary features as input. First, we provide a
∗Authors contributed equally.

CoNEXT Companion ’23, December 5–8, 2023, Paris, France
© 2023 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Companion of the
19th International Conference on emerging Networking EXperiments and Technologies
(CoNEXT Companion ’23), December 5–8, 2023, Paris, France, https://doi.org/10.1145/
3624354.3630089.

Approach Computation Advantageous trees’ characteristics
memory-wise

MAT 𝑂 (𝑇) sparse, shallow, few features
Dense 𝑂 (𝑇 × 𝐷) full, deep, many features

Hybrid 𝑂 (𝑇 × 𝐷) full in the first layers then sparse,
deep, many features

Table 1: RF implementations time and space complexity with
𝑇 trees with 𝐷 as maximum depth.

brief introduction to theMAT RF implementation. Next, we present
a dense RF implementation that maps tree nodes to specific memory
locations. Finally, we detail our novel hybrid RF implementation
that exploits the trees’ sparsity to provide an alternative compact
representation when other approaches are inadequate.

Match-action table representation. MATs have been used to
implement Decision Trees (DT) in [3]. In our binary classification
case with binary input features, a DT can be implemented using
a single MAT featuring one rule for each leaf of the tree. In each
row, the matching key corresponds to the concatenation of the
feature bits, while the action corresponds to the predicted label.
This approach scales well for Random Forests [4], where each addi-
tional tree in the forest only requires an extra MAT. The memory
requirement (in terms of number of bits) of a RF implemented using
MAT is then:

𝑀𝑒𝑚𝑀𝐴𝑇 =
∑︁
𝑡 ∈𝑅𝐹

𝐿𝑡 (2 𝐹 + 1), (1)

where 𝑡 is a tree of the RF, 𝐿𝑡 the number of leaves in 𝑡 , 𝐹 the number
of features, and the factor of two is due to the fact that encoding a
ternary value i.e., “0”, “1”, or “don’t care”, for each feature requires
two bits.

When restricted to binary leaves, a simple yet efficient optimiza-
tion consists in encoding solely the leaves that correspond to one of
the two classes, capturing the other with a default miss condition
in the MAT (cf. Figure 1). In particular, if one of the classes is vastly
under-represented in the tree’s leaves, this approach can signifi-
cantly shrink the model size, as only the leaves corresponding to
the less frequent class are stored in the MAT.

Dense tree representation. An alternative approach to imple-
ment a RF in an FPGA, is to map each tree to its own memory block
which are then accessed sequentially as in [2]. For each DT, each
node inside a layer is numbered sequentially, starting from 0 to
2𝑘 − 1, where 𝑘 is the layer depth starting from 𝑘 = 0 at the root, as
depicted in Figure 2. Then, each DT is executed as follows: given

https://doi.org/10.1145/3624354.3630089
https://doi.org/10.1145/3624354.3630089
https://doi.org/10.1145/3624354.3630089

CoNEXT Companion ’23, December 5–8, 2023, Paris, France Andrea Monterubbiano et al.

Figure 1: MAT representation Figure 2: Dense tree representation
Full Tree Hybrid Layers

Pointer to next
layer address

Nt-3

Nt-2

Nt-1

Nt
nodes

Figure 3: Hybrid tree representation

any node at position 𝑖 in layer 𝑘 , its children in the next layer 𝑘 + 1
can be found at the memory locations 2𝑖 and 2𝑖 + 1.

In our binary classification case with binary input features, each
node is only required to store (i) one flag bit to distinguish between
the two types of nodes (split or leaf); and (ii) the index of the feature
to compare against (if it is a split node) or the predicted class label
(if it is a leaf node). The memory required in bits for RF is thus:

𝑀𝑒𝑚𝐷𝑒𝑛𝑠𝑒 =
∑︁
𝑡 ∈𝑅𝐹

(2𝐷𝑡 − 1) (⌈𝑙𝑜𝑔2 (𝐹)⌉ + 1), (2)

with 𝑡 being a tree of the 𝑅𝐹 ,𝐷𝑡 the depth of tree 𝑡 and 𝐹 the number
of binary features. We remark that, while this implementation can
be more efficient in terms of memory occupancy than MAT in some
cases, it has the drawback of requiring more memory accesses.

Hybrid tree representation. The dense tree representation may
waste a significant amount of memory in the case of a sparse tree
that is far from being a full binary tree. Thus, we propose a hybrid
tree approach that encodes a tree using a dense representation for
the first layers and an indexed encoding for the deeper layers.

We identify the maximum number of nodes 𝑁 across all the
layers of all trees in the forest. For the first𝑀 = ⌊𝑙𝑜𝑔2 (𝑁)⌋+1 layers,
we use the dense tree implementation; while for the remaining
deeper and sparser layers, we only allocate 𝑁 nodes. This allocation
calls for a more sophisticated addressing. For each of these sparse
layers’ nodes, we add a pointer to its left child in the next layer. Its
right child is found at this position plus 1. This implementation is
sketched in Figure 3. The memory requirement in bits for a Random
Forest 𝑅𝐹 can now be expressed as:

𝑀𝑒𝑚𝐻𝑦𝑏𝑟𝑖𝑑 =
∑︁
𝑡 ∈𝑅𝐹

(2𝑀 − 1) (⌈𝑙𝑜𝑔2 (𝐹)⌉ + 1)︸ ︷︷ ︸
dense M-tree representation

+

𝑁 (𝐷𝑡 −𝑀) (⌈𝑙𝑜𝑔2 (𝐹)⌉ + 1 + ⌈𝑙𝑜𝑔2 (𝑁)⌉)︸ ︷︷ ︸
indexed encoding

(3)

with 𝑡 being a tree of the 𝑅𝐹 , 𝐹 the number of binary features and
𝐷𝑡 the depth of tree 𝑡 .

3 EVALUATION
In Table 1, we qualitatively compare the three approaches in terms
of computation complexity and report their most favorable sce-
nario from a memory perspective. Naturally, the memory footprint
of each approach depends on the trees characteristics. From the
previous equations, we conclude that our hybrid approach is more
memory-efficient than the dense approach when:∑︁

𝑡 ∈𝑅𝐹
indexed enc. <

∑︁
𝑡 ∈𝑅𝐹

(2𝐷𝑡 − 2𝑀) (⌈𝑙𝑜𝑔2 (𝐹)⌉ + 1) . (4)

Similarly, hybrid is more memory-efficient than MAT when:∑︁
𝑡 ∈𝑅𝐹

indexed enc. <
∑︁
𝑡 ∈𝑅𝐹

𝐿𝑡 (2 𝐹 + 1) −
∑︁
𝑡 ∈𝑅𝐹

dense M-tree. (5)

Note that these implementations require leaf nodes to store the
class label (1 bit) rather than the class probability (1 float). The
final RF output corresponds to a majority vote across trees rather
than an average of class probabilities. Therefore the probability
threshold needs to be hard-coded in each leaf. We evaluate the
performance impact of this change with a binary flow classification
task: separating elephants from mice flows. We use a public 1-hour
CAIDA TCP traffic trace from 2016-01-21 at 1 PM. Each flow is
labeled as elephant (top 1% sizes) or mice (bottom 99% sizes). The
RF takes as input 96 binary features which correspond to the flow
4-tuple in binary format, omitting protocol. The RF is trained and
pruned offline on the first 5 minutes of the trace and tested on
the last 5 minutes, with a probability threshold of 0.04 to classify
approx. 1% of the flows as elephants. The model F1-score decreases
by only 1.07% when hard-coding the threshold in the leaves vs. the
untouched vanilla Random Forest. Using a hybrid representation,
we report 4.4× and 48.8× memory savings vs. the MAT and dense
approaches respectively.

4 FUTUREWORK
The main limitation of this work is that it only supports binary
features. While this restriction can naturally accommodate categor-
ical variables (thanks to, e.g., one-hot encoding), it would require
some pre-processing to deal with numerical floating point quan-
tities (e.g., with quantization). In this case, we plan to thoroughly
study the trade-offs at play in terms of memory and performance.
Additionally, we plan to explore the implementation of Gradient
Boosting Decision Trees (e.g., XGBoost, CatBoost). Unlike Random
Forests, these ensemble models are additive, meaning that each tree
contributes to the final outcome through summation. Their imple-
mentation in FPGA is challenging because the quantities added are
typically highly sensitive floats.

REFERENCES
[1] Ðukić et al. 2019. Is advance knowledge of flow sizes a plausible assumption?. In

16th USENIX Symposium NSDI’19. 565–580.
[2] Elnawawy et al. 2020. FPGA-based network traffic classification using machine

learning. IEEE Access 8 (2020), 175637–175650.
[3] Lee et al. 2020. Switchtree: in-network computing and traffic analyses with random

forests. Neural Computing and Applications (2020), 1–12.
[4] Zheng et al. 2021. Planter: seeding trees within switches. In Proceedings of the

SIGCOMM’21 Poster and Demo Sessions. 12–14.

	1 Introduction
	2 Approaches
	3 Evaluation
	4 Future work
	References

